Today's Question

How can rates encourage hydrogen production and distribution that benefits the grid and lower price at the pump?

Analysis of electric utility rates (7,182 utility rates)

Three basic structures for energy and demand tariffs: NO, Flat, and TOU.

- NO: no charge for either energy or demand.
- Flat: single constant charge for electricity during each billing period
- TOU: any form of dynamic pricing for energy or demand (time-of-use).

Example: Flat_TOU = Flat charge for energy & TOU charge for demand.

Geographic distribution of industrial and commercial utility rates across the United States

Ranking of energy and demand charges for California						
	Flat_NO	Flat_Flat	Flat_TOU	TOU_NO	TOU_Flat	ΤΟυ_ΤΟυ
Energy charge	13 th	47 th	41 th	41 th	28 th	42 th
Demand charge	-	14 th	8 th	-	24 th	17 th

H2 production cost: Effects of capacity factor

Technology assumptions (1 MW electrolyzer). Ref: Eichman et al. 2016.

- Capital cost: \$1,691/ kW
- **Replacement cost:** \$18.64/kW-year
- H2 storage capital cost: • \$1000 /kg
- Fixed O&M cost: • \$75.2/kW-year
- Lifetime: 20 yrs •
- Efficiency: 54.3kWh/kg •
- Capacity factor (CF): ٠ 40%, 60%, 80%, 90%, and 95%

Tariffs with dynamic pricing: There is a trade-off between electricity cost and equipment, FOM, and storage costs, with an optimal capacity factor of ~95%, for all rate structures. i.

- Stations \rightarrow no demand charge for low utilization
- ii. Production facilities \rightarrow more aggressive rates

H2 production cost: Geographic distribution

Onsite Production:

Grid

Renewable Hydrogen **Production: Electrolysis**

Multiple methods to yield renewable hydrogen through electrolysis.

Centralized Production:

Renewable Feedstock

Electrolysis

Point of use

Electrolysis

Distribution

Centralized & Onsite Production Cost

Cost competitive renewable hydrogen via electrolysis is strongly determined by renewable electricity.

- Onsite generation typically requires REC's, which add between \$0.02-\$0,04/kWh.
- Compression, chilling, dispensing, and logistics are not accounted for in model.

<\$0.05/kWh

Renewable Power

<\$2.75/kg

Production Cost

LCFS

Comparable to non-renewable H2

Reaching Economy of Scale Through Centralized Production

As production capacity surpass >10MW, economy of scale begins to make renewable hydrogen cost competitive with non-renewable hydrogen and gasoline.

• Electricity costs include both demand and energy charges Major uses of electricity are compressing and chilling of hydrogen

