
Utility Wildfire Risk Commonalities and Metrics

Joseph W. Mitchell, Ph.D. for The Mussey Grade Road Alliance

jwmitchell@mbartek.com

January 25, 2016

S-MAP Intervenor Workshop

1

Topics

ALARP

- Utility Risk Commonalities: Environments and Assets
- Metrics

January 25, 2016

ALARP Framework

- MGRA & UCAN favor using ALARP as a framework because it is has been implemented in a number of contexts
- Start with a known working framework
- Construct different FN tolerability curves for different values: safety, environmental, economic.
- Identify the missing components (data, models) and estimate uncertainty
- Identify how utilities manage specific risks in lieu of data and models
- Subject Matter Expert \rightarrow Data driven estimations over time
- Create "draft" framework using current risk methodology
- Iteratively improve framework by collecting data, developing models, and analyzing risk
- Any alternative framework needs to be a complete framework, not calculation technique

ALARP Tolerability & Values

	Lives / Injuries	Property	Environment
Gas explosion, residential	Intolerable	High	Low
Wildfire, urban interface	High	Intolerable	High
Major methane leak	Moderate	Moderate	High
Cyberattack	Moderate	High	Acceptable
Mitigation: Risk from power shut off under fire weather	Moderate	Moderate	Acceptable
Mitigation: Extensive wildland clearing for fire prevention	Acceptable	Low	High / Intolerable

January 25, 2016

Cost Issues

- It is costly to collect data and develop models
 - Collect data and develop models for all major risks <u>unless</u> a positive showing that costs would be <u>grossly disproportional</u> to benefits
- "Gross disproportionality" criterion results in higher safety spending
 - Provides a buffer that errs on the side of safety. Avoids "Pinto problem".

Utility Risk Commonalities

• Public requires:

- Assured level of protection from utilities and CPUC
- Not to pay multiple times for the same product
- To know its public utilities are using the best and most cost effective assets
- To know that its public utilities are properly prioritizing safety improvements
- Risk based on:
 - Environments
 - Assets

Separation of business and public risks

Environments and Assets

- Utility claim: All utility risk profiles are unique
- Risks are associated with the behavior of <u>assets</u> in specific <u>environments</u>
- Only <u>portfolios</u> of assets and environments are unique to utilities
- Utilities have many assets and environments in common
- Where there is commonality, seek common risk approach. Where not, justify differences.

Example: Wildfire Environments

From Littell et. al., 2009

Two major wildfire environments in California:

- Chaparral and coastal woodland
 - Wind driven events ("Santa Ana" "Sundowner", "Diablo")
 Fosberg 1966, Blier 1998,
 Raphael 2003
 - Peak fire season Sep-Nov
 - High winds risk of infrastructure damage & vegetation contact
 - Witch, Slide, Malibu, Guejito
- Sierra
 - Peak fire season Jun-Oct
 - Utility fires due to vegetation contact
 - Butte, Trauner

NOTE – COMMONALITY IS BY ENVIRONMENT NOT UTILITY

S-MAP Intervenor Workshop

January 25, 2016

Example: Underground Assets

Vault

Widespread in SCE area Popular with homeowners (aesthetics)

Padmount

SDG&E Claims: <u>safer</u> (leakage, confined space) cheaper more reliable

http://www.sandiego.gov/undergrounding/

QUESTIONS:

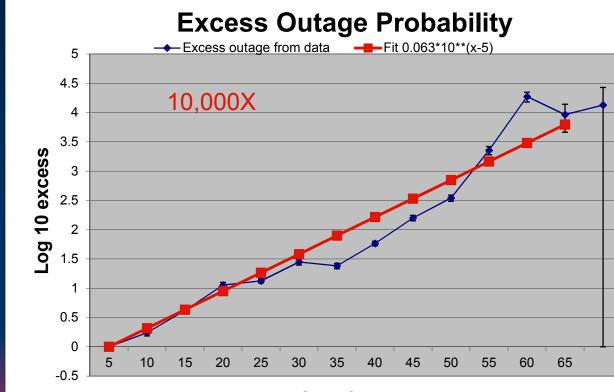
- Are there real <u>environmental</u> differences between SCE/SDG&E territories that merit different technologies?
- Are there real safety issues that warrant concern in SMAP/RAMP?
- Why is it OK for ratepayers of one utility to have different risk/cost/reliability?

January 25, 2016

Safety Metrics

Examples and Usage

"Near Miss Metrics" Example: Outages SDG&E data


Timestamp

		Caus	se Identification		
Circuit	Occurrence	Cause Category	Cause Description	Control Date	Station Code
1001	1/10/05 5:13 AM	Weather	Circ. Flashover/storm/high winds/undet.	0	RSF
1001	2/21/05 7:50 AM	Weather	Circ. Flashover/storm/high winds/undet.	0	RSF
1001	7/20/05 8:04 PM	Customer Contact	Vehicle contact	0	RSF
1001	8/25/05 11:24 AM	Customer Contact	Vehicle contact	0	RSF
1001	1/13/06 8:32 AM	Undetermined	Undetermined	0	RSF
1001	10/14/06 11:01 AM	Weather	Circ. Flashover/storm/high winds/undet.	0	RSF
1001	10/14/06 4:04 PM	Customer Contact	Vehicle contact	0	RSF
1001	12/27/06 6:31 AM	Equipment	Capacitor failure	0	RSF
1001	8/16/07 3:28 PM	Undetermin		0	RSF
1001		ather C	General Location: re	0	RSF
1001	8/15/09 1:07 PM	Equipmen	ircuit & Nearest	0	RSF
1001	12/7/09 4:28 PM	Weather			RSF
1001	5/8/10 10:31 PM	Customer V Contact	Veather Station	0	RSF
1001	5/12/10 7:37 PM	Undetermined	Undetermined	0	RSF

Refine data: What has safety impacts?

- Most Relevant to Fire Safety (more likely during fire weather)
 - Weather related outages
 - Vegetation related outages
 - Mechanical failures
- Less Relevant to Fire Safety:
 - Vehicle collisions
 - Electrical component failures
 - Birds & animals
- Unknown: Treat as Suspect

Find safety-related effects:

Wind Gust Speed mi/hr

Good example of a "fat-tail" risk:

Potential damage rises faster than probability falls.

The worst events drive future losses.

Other examples:

- Earthquakes
- Landslides

Averages from history don't work, Monte Carlo can help

Compare with risk estimates

Outage rate for VgOR / 100 mi vs SDG&E Circuit Risk Metric vegetation-100 related outages only 10 Outages/100mi-year 1 Possible effect of 0.1 vegetation management program 0.01 1.2 2.2 1.4 1.6 1.8 2 2.4 1 Length-weighted circuit risk score FiRM risk scores (SME) per circuit, weighted for length January 25, 2016 S-MAP Intervenor Workshop 14

Example: Outage impacts

<u>CUE example: "What is the value of improved electric reliability that avoids the asthma</u> <u>attack caused by diesel powered backup generators running during an extended outage?</u> <u>What is the dollar value of the house fire avoided by the candle because electric reliability</u> <u>was improved?</u>" (Comments p. 3)

MGRA and other parties actually did candle & generator fire risk estimates for A.08-12-021. Data from generator and candle fires from fire agencies. Increased usage & risk estimated from projected reliability reduction.

D.09-09-030 accepted opposing party positions that fire risk could actually be increased by shutting off power under too low of a threshold.

CONCLUSION – THERE IS A SIGNIFICANT AMOUNT OF EXISTING DATA FOR NUMEROUS RISKS.

January 25, 2016

Other Fire Metrics

- Fire history
- Inspection records
- Maintenance records

Metrics need to be identified for other risks

Thank You

Slides available from: M-bar Technologies and Consulting Ramona, California www.mbartek.com jwmitchell@mbartek.com

January 25, 2016