

An EDISON INTERNATIONAL® Company

SMAP Workshop

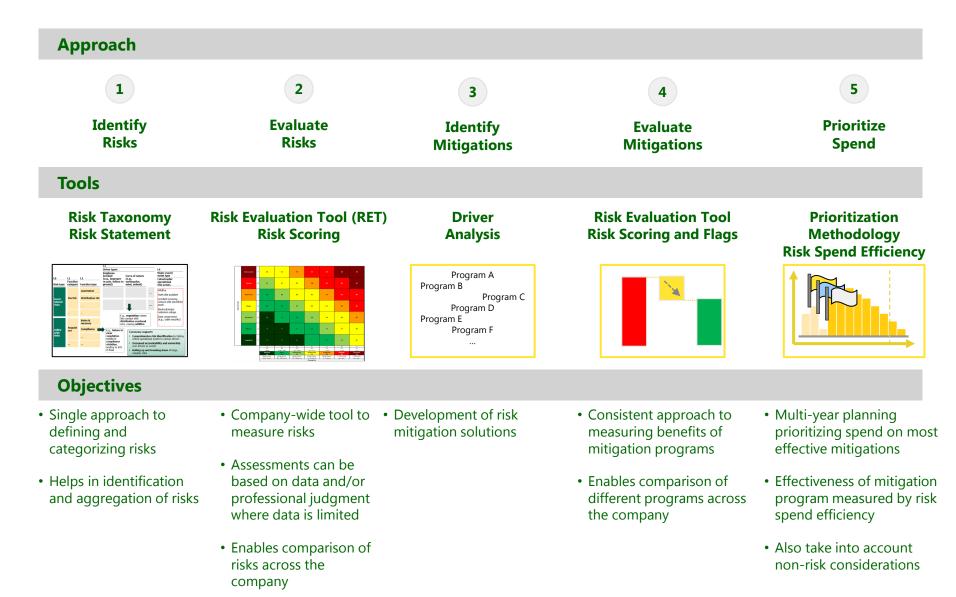
Natalia Woodward Director, Risk Management

Southern California Edison August 3, 2015 Shinjini Menon Director, General Rate Case

SOUTHERN CALIFORNIA EDISON®

SCE's Risk-Informed Planning Approach is Evolving

SCE began developing explicit risk-informed planning and prioritizing methodologies and processes in 2014.


SCE has undertaken a phased implementation approach to facilitate thoughtful and sustainable change; initial pilot includes specific T&D activities.

SCE's risk assessment and prioritization approaches will evolve in coming planning cycles.

Data, modeling, and analysis capabilities will need continuous focus.

Internal and regulatory decision-making processes have to be flexible and practical to promote continuous improvement, effectiveness, and efficiency.

Risk-Informed Planning Approach and Tools

Risk Evaluation Tool is Foundational to Risk-Informed Planning

Impact dimensions: Capture different types of consequences		ct levels & calibration: Each impact dimension broken -7 levels, calibrated across dimensions	defin	C Frequency levels: Frequency defined as number of events per year		
	Score	Example impact	Score	Frequency		
Safety	7	Safety: Many fatalities	7	>10x / year		
Poliobility	6	Reliability: Outage resulting in at least 2 million total customer hours of interruption	6	1-10x / year		
Reliability Environmental	5	Safety: Serious injuries or illnesses to many employees, public members or contractors resulting in hospitalization, disability or loss of work	5	1x every 1-3 years		
o "	4	Reliability: Outage resulting in at least 20,000 total customer hours of interruption	4	1x every 3-5 years		
Compliance	3	Financial: \$300k - \$3M in costs	3	1x every 10-30 years		
Financial	2	Safety: Minor injury or illness	2	1x every 30-100 years		
	1	Reliability: Outage resulting in less than 200 total customer hours of interruption	1	1x every 100+ yrs.		

D Risk score equation which measures risk scores by adding the scores for each of the relevant impact dimensions

- Impact & frequency produce a risk score for each dimension
- Add risk scores for each dimension to get aggregate risk score
- Risk score is a metric that can be used to compare risks of different types

- High impact, high frequency: big risk
- Moderate impact, low frequency: small risk

Risk Evaluation Tool: Impact Dimensions

SAFETY	The potential impact of a risk event on public or worker safety
RELIABILITY	The potential impact of a risk event on service or grid reliability
ENVIRONMENTAL	The potential impact of a risk event on natural resources such as air, soil, water, plant or animal life
COMPLIANCE	The potential impact of a risk event resulting in non-compliance with federal, state, local, industrial, or operational standards or requirements
FINANCIAL	The potential of a risk event resulting in a financial costs to customers, shareholders and/or third parties measured in incremental dollar impact

Prioritization of Each Project, Program or Activity Is Informed By Its Risk Reduction Benefit and Cost

RISK SCORE	RS = TEF * CP * 10 ^{CI} , where: RS = Risk Score of a risk statement TEF = Triggered Event Frequency - Number of times a risk event occurs per year CP = Consequence Percentage - Conditional probability that an outcome occurs given the risk event has occurred CI = Consequence Impact - Expected severity level of the impact for the risk
RISK REDUCTION	Mitigated Risk Score = RS pre-mitigation – RS post-mitigation
PRIORITIZATION METRIC	Risk Spend Efficiency = Mitigated Risk Score / Program Cost (\$M)
OTHER NON-RISK CONSIDERATIONS	 Funding Resources Operational constraints Compliance requirements In-flight projects

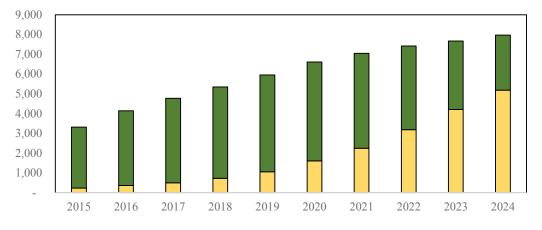
Risk Identification: Systematically Identifying, Categorizing, and Documenting Risks

TOOLS / MODELS	Risk statement formatRisk taxonomy
PROCESS	Analysis of SCE and industry eventsSurvey and workshops with subject matter experts and leaders
ILLUSTRATIVE EXAMPLE Pole Failure	 Asset related event-outcome-impact combinations Pole fails in service potentially leading to human contact with overhead conductors, which could have safety and financial impacts; potentially leading to a wildfire, which could have environmental and financial impacts; potentially leading to property damage, which could have financial impacts; and potentially leading to an outage, which could have reliability impacts.

Risk Evaluation: Consistently Scoring Risks Based on Probability and Consequence

TOOL / MODELS	 Risk Evaluation Tool Risk Scoring Formula Asset condition models Failure analysis models Impact analysis tools Asset reliability models
PROCESS	 Technical analysis of utility historical or industry data to forecast probability and impact Subject matter expert input for validation or when data is limited
ILLUSTRATIVE EXAMPLE Pole Failure	 Asset condition analysis- estimate pole condition based on latest inspection Failure analysis (TEF)- forecast probability of pole failure based on pole condition and other drivers of pole failure Outcome and Impact Analysis (CP / CI) - forecast worst reasonable direct impact of pole failure for human contact, wildfire, property damage, or outage Calculate risk score for each risk statement based on probability of risk event, probability of outcome, and impact of outcome

Risk Evaluation – Illustrative Example Estimating Probability of Pole Failure


$$RS = \overline{TEF} * CP * 10^{CI}$$

Forecast based on probabilistic model which is a function of:

Presence and extent of pole deterioration

TRIGGERED EVENT FREQUENCY (TEF)

- latest inspection results on pole deterioration and
- estimated increase in deterioration since last inspection based on age
- · Initial safety factor of the pole as designed
- · Likelihood of critical load based on deterioration and safety factor

Estimated # of pole failures prevented by pole programs in placeExpected # of pole failures without further mitigation

Risk Evaluation – Illustrative Example Estimating Consequence of Pole Failure

$RS = TEF * CP * 10^{CI}$

Impact Analysis:

- Human contact and Property Damage Historical CPUC reportable incidents and emergency pole replacement data
- Wildfire
 - percentage of poles in high fire areas
 - historical rate of downed wire remaining energized
 - assumptions on potential impact for illustrative purposes
- Outages historical outage data

Worst Reasonable Direct Impact (WRDI):

- Estimate probability of outcome for each impact level
- Calculate risk score for each impact level
- CP / CI combination with highest risk score for each event-outcome combination

CONSEQUENCE PERCENTAGE (CP)

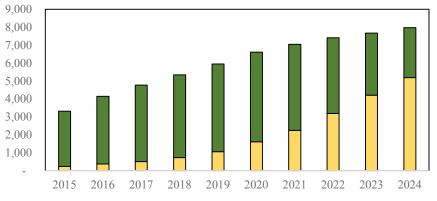
AND

CONSEQUENCE IMPACT (CI)

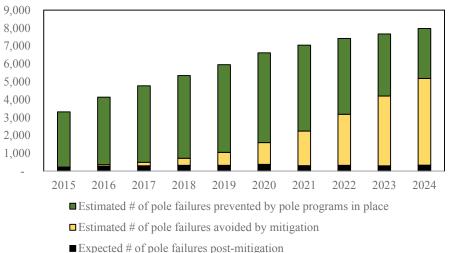
Risk Evaluation – Illustrative Example of Risk Scoring Pole Failure Risks

 $RS = TEF * 10^{CP*CI}$

RISK SCORING FOR POLE FAILING IN SERVICE BY POTENTIAL OUTCOME IN 2015										
		Risk Statem e	Current Residual							
	No.	WRDI CP	WRDI CI	Risk Score						
a	1	Injury	Safety	230	0.012%	6	28,497			
b			Financial	230	0.012%	4	285			
с			Environmental	230	0.063%	5	14,375			
d	2	Wildfire	Safety	230	0.031%	6	71,875			
e			Financial	230	0.063%	6	143,750			
f	3	Property Damage	Financial	230	0.012%	3	28			
g	4	Outage	Reliability	230	24.014%	3	55,231			
			Total				314,042			


SUMMARY OF RISK SCORES FOR POLE FAILING IN SERVICE BY IMPACT DIMENSION									
	Currrent Residual Risk								
	Impact Dimension Score								
a+d	Safety	100,372							
g	Reliability	55,231							
с	Environmental	14,375							
b+e+f	Financial	144,063							
	Compliance	0							
	Total	314,042							

Mitigation Identification: Systematically Identifying Ways of Reducing TEF, CP, or CI


TOOL / MODELS	 Root Cause Analysis Fish Bone Diagrams Driver Analysis Asset Criticality Database Mitigation Alternative Development
PROCESS	 Analysis of utility historical data or industry intelligence Subject matter experts input – engineering and field employees
ILLUSTRATIVE EXAMPLE Pole Failure	 Driver analysis – identify all factors that impact the frequency or impact of pole failure Deterioration of pole, pole loading, pole material and manufacturing method, pole location – high wind or high fire, residential, metro, etc. Asset Criticality Database – asset level data to quantify or qualify drivers Mitigation Alternative Development – Identify remediation that specifically targets the risk drivers in each stratum or tranche Pole design standards , Tailored pole inspection programs , Pole repair or strengthening, Pole replacement , Undergrounding, Vegetation management and brush control

Mitigation Evaluation: Comparing Mitigations Options Identified Consistently

TOOL / MODELS	Risk Evaluation ToolRisk Scoring FormulaFailure analysis models	Impact analysis toolsBundling or unbundling of work
PROCESS	 Technical analysis of utility historical of Subject matter expert input for validation 	or industry data to forecast probability and impact of risk tion or when data is limited
ILLUSTRATIVE EXAMPLE Pole Failure	 Pole replacements based on 10-year Two tranches – high fire and non-high 	

Estimated # of pole failures prevented by pole programs in place

Mitigation Evaluation – Illustrative Example Estimating Post-Mitigation Risk Scores for Pole Failure Risks

RISK SCORING FOR POLE FAILING IN HIGH-FIRE AREA BY POTENTIAL OUTCOME IN 2015										
ASSUMING 1100 POLE REPLACEMENTS										
	Risk Statement Current Residual Planned Residual									
Impact WRDI I					Risk		WRDI		Risk	
No.	Outcome	Dimension	TEF	СР	WRDI CI	Score	TEF	СР	WRDI CI	Score
1	Injury	Safety	37	0.004%	6	1,303	27	0.004%	6	951
		Financia1	37	0.004%	4	13	27	0.004%	4	10
		Environmental	37	0.389%	5	14,375	27	0.389%	5	10,490
2	Wildfire	Safety	37	0.194%	6	71,875	27	0.194%	6	52,449
		Financia1	37	0.389%	6	143,750	27	0.389%	6	104,899
3	Property Damage	Financial	37	0.012%	3	5	27	0.012%	3	3
4	Outage	Reliability	37	24.014%	3	8,885	27	24.01%	3	6,484
			Total			240,206				175,285

	ASSUMING 4000 POLE REPLACEMENTS									
Risk Statement				Current	Residual		Planned Residual			
		Impact		WRDI		Risk		WRDI		Risk
No.	Outcome	Dimension	TEF	СР	WRDI CI	Score	TEF	СР	WRDI CI	Score
1	Injury	Safety	193	0.014%	6	27,194	174	0.014%	6	24,517
		Financia1	193	0.014%	4	272	174	0.014%	4	245
		Environmental	193				174			
2	Wildfire	Safety	193				174			
		Financia1	193				174			
3	Property Damage	Financia1	193	0.012%	3	24	174	0.012%	3	22
4	Outage	Reliability	193	24.014%	3	46,346	174	24.014%	3	41,784
			Total			73,836				66,567

Prioritization: Ranking Type and Scope of Mitigation

TOOL / MODELS	 Risk Score Efficiency Metric (RSE) Other considerations for funding, resources, operational constraints, and schedule
PROCESS	 Analysis and comparison of RSE among mitigation alternatives by risk, by asset, and across portfolio Management and subject matter expert input to overlay business and operational judgment
ILLUSTRATIVE EXAMPLE Pole Failure	 RSE (includes estimated costs and risk reduction) Resource requirements (crews, planners, etc.) Operational considerations (permitting, bundling with other work on the same circuits, etc.) Compliance considerations (GO 165 and GO 95)

Mitigation Tranche	Work Volume A	Unit Cost B	Total Cost (\$M) C=A*B	Current Residual Risk Score D	Planned Residual Risk Score E	Risk Reduction F=D-E	Risk Spend Efficiency G=F/C
Pole Repl in HF areas	1,100 poles	\$14,000	\$15.40	240,206	175,285	64,921	4,216
Pole Repl in NHF areas	4,000 poles	\$14,000	\$56.00	73,836	66,567	7,269	130

Challenges and Opportunities

DATA	 Comprehensive data on incidents and asset (attributes, condition, performance) is not always available, or is not compiled in a manner that facilitates analysis Need continued focus on building data capabilities prioritized by current risk evaluation Industry data can be leveraged until utility specific data capability is developed Informed judgment has to be applied and documented to continue progress towards risk-informed planning until such data capabilities are mature
MODELS & METHODS	• Analysis to better isolate risk drivers by asset class needed
	Models to forecast asset condition and asset failures need continued refinement
	 Risk evaluation, mitigation evaluation, and prioritization methodologies will continue to evolve
	· Drocoscos within SCE to perform view informed planning and provide exprension
PROCESS	 Processes within SCE to perform risk-informed planning and provide appropriate governance is evolving as our capabilities mature
	• Will need to align these with regulatory processes as they reach steady state
ALIGNMENT ON OBJECTIVES	Currently various regulatory proceedings and requirements incorporate risk in different ways
	• SCE internal planning also incorporates risk in various planning activities, but sometime through different lenses
	 Need to align objectives for consistency and efficiency in planning functions and decision making