Bloomenergy[®]

DIESEL ALTERNATIVES WORKSHOP

BRIAN KANE

DIRECTOR, ENTERPRISE SYSTEMS ENGINEERING

SUMMARY OF CHALLENGE STATEMENT

Does your solution replace diesel generators by supplying power to all customers at a substation level?

Is solution portable or permanent?

Can your solution sustain islanding for 48 and/or 96 hours?

Can your solution be ready for commercial operation by 2021 and can you	YES
execute a full-scale deployment?	

How many MW can your solution reasonably cover in 2021?

Bloomenergy[®] 2

PROVEN IN BOTH

300+ MW

YES

YES

ENERGY PLATFORM BUILT FOR PROTECTION

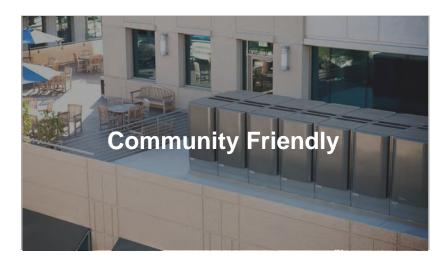
Long Duration Protection of Critical Infrastructure

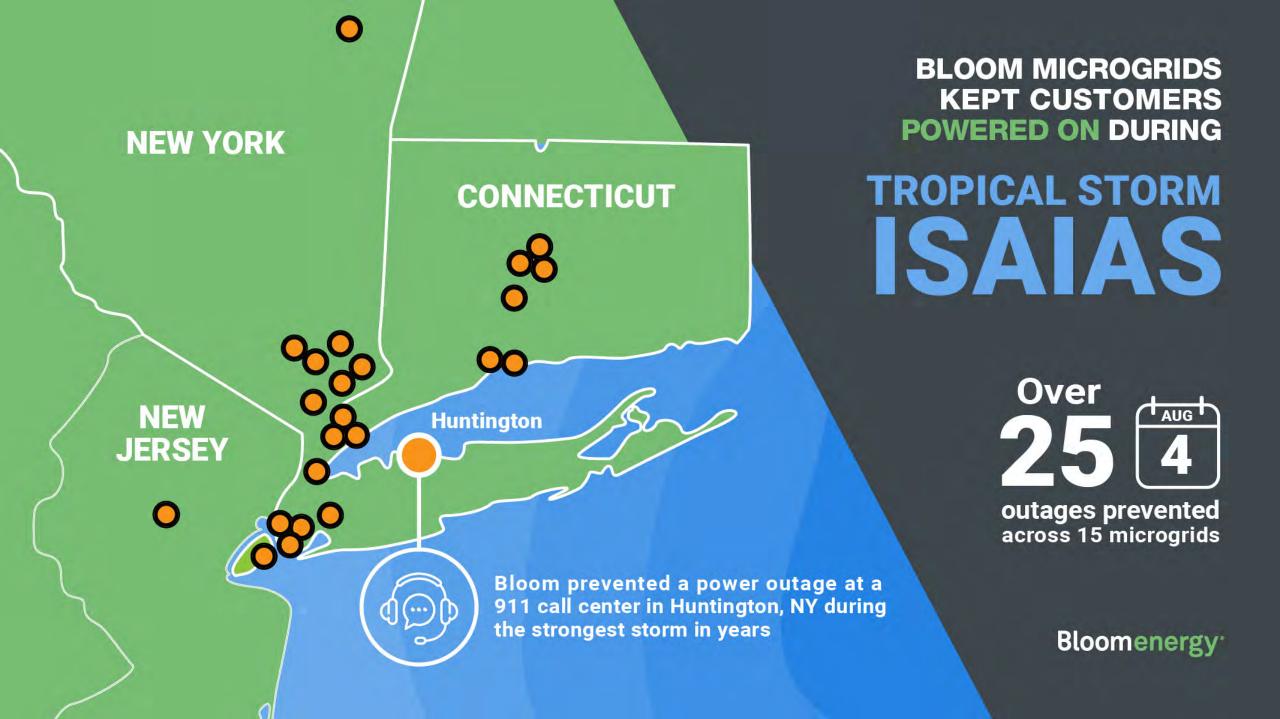
Capability to run on biogas or hydrogen

Virtually Zero NO_x, SO₂, Particulate Matter

HEADQUARTED AND KEY MANUFACTURING IN CALIFORNIA

OVER 700 SITES & 100 MICROGRIDS DEPLOYED




PROOF POINTS PORTABLE, SCALABLE, RESILIENT & CLEAN

Bloomenergy[®]

SUBSTATION SOLUTIONS

Substation	Microgrid Size	Utility Capacity Support	Application	Proof Point	Community Benefits	Utility Benefits
Alto	32 MW	38 MW	Stationary	Delmarva Substation	 Virtually zero local air pollutants Very quiet Energy dense 	 Local capacity Permanent transmission capacity benefit Peaking capability
Covelo	2.65 MW	3.25 MW	Portable	Sleep Train Arena	 Virtually zero local air pollutants Very quiet Energy dense 	 Ability to move to other substations

Modular, community-friendly technology enables solutions for various substation applications Permanent solution can eliminate need for rolling black-outs deep in distribution system

Bloomenergy[®]

2.65 MW SPECIFICATION PARALLEL IN BLOCKS TO ANY SYSTEM SIZE

Output F	Rating
Total System Generation Capacity	3250kW
System Generation Redundancy	N+1 Energy Server (250kW)
Grid Independent Load Support	2650kW/3000kVA @ N+2 MI5
Maximum grid independent step load	850KW or 1600kW (ie 30 or 60%)
Duration between max grid independent load step	100 seconds
Performance S	pecification
Power Factor range	0.75-1.0(lead/lag)
Max crest factor	3:1
Nominal output voltage after transformer	480V AC (transformer provided per site voltage external to system)
Fault Current Capability	250% of Grid Independent Load Support
Phase Sequence	3ph-ABC
Configuration	3W
Waveform	Sine Wave
Voltage recovery	Meets ITIC, IEC 62040 Class 1
Accuracy to voltage set point	±0.5%
Static (steady state) voltage regulation	≤1% with resistive load
Transient (dynamic) voltage regulation	≤5% with resistive load
Voltage THD with 100% linear load	≤2%
Frequency setting	60Hz Fixed / Sync. To grid
Voltage THD with 100% linear load	≤2%
Inverter Certifications	UL1741/Rule 21 Compliant
	-

KEY REQUIREMENTS CONFORMANCE

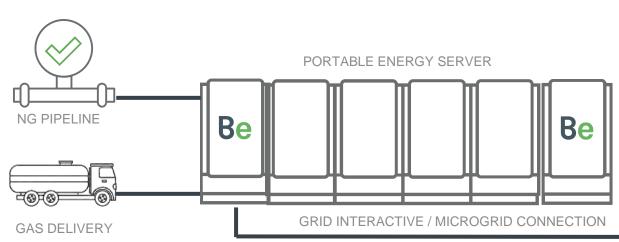
- All Equipment Provided will be commercial off the shelf
- 300+ MW of equipment can be supported by 10/2021 with decision by 10/2020
- Permanent solutions will need to be assessed to allow for permitting and utility requirements
- System capable of all power quality, paralleling, and protection requirements
- Paralleling system is standard Bloom Energy solution, no special testing required in the field.
- Can demonstrate performance on existing systems already operating at scale in California
- Portable solution deployable in <72 Hours

Technology Highlights

- Proven in PG&E technology for 12 years
- Existing Bloom Energy PG&E relationship supports standard communication and controls protocols
- Capable of running on renewable fuel today
- Virtually zero local air pollution
- Can run indefinitely
- Easily pairs with all other generation technologies

Other Key Challenge Statement Considerations

VENDOR COMPETENCE


- Bloom Energy acts as primary vendor for project implementation
 - Will employ utility approved electrical partners to implement electrical systems on site
 - Will procure utility compliant switchgear and controls to integrate with the substation
 - Will develop proactive processes and procedures to conform to utility safety procedures
 - Already operating >265 MW with CA utilities in conformance with Rule 21 standards

SPECIFICATION CONCERNS

- 250% requirement drives overspend on components and paralleling equipment to support an avoidable condition for all proposed solutions. Given this is an emergency, interim microgrid response for a finite period of time, alternatives should be considered.
 - Modify downstream fault settings at key distribution points to be within available fault levels or enable inverter current clamp to disconnect distribution.
 - Energize the downstream MV distribution with inverter based voltage ramp control over 8 seconds limiting inrush demand

COVELO 2.5 MW APPLICATION* 2.65 MW BUILDING BLOCK

	BLOOM ENERGY	DIESEL	
KW/SF	.37	.39	
Space Required+	8,020 sq. ft.	6,400 sq. ft.	
Sufficient Space at Sub-station	Yes	Yes	
Community Friendly Generation	Yes	No	
Permittable for permanent use	Yes	No	
Island Duration Capability	Indefinite with pipeline or 96 hours at peak with live refuel capability	Unknown	

UTILITY GRID

SYNCHRONOUS MACHINE GENERATING FAULT CURRENT UP TO 250% OF NAMEPLATE

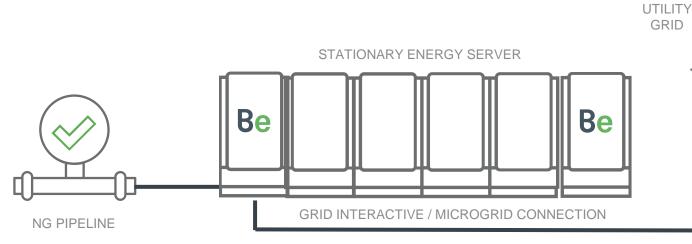
Recommendation:

Use 2.65 MW system to be deployed temporarily with temporary fuel

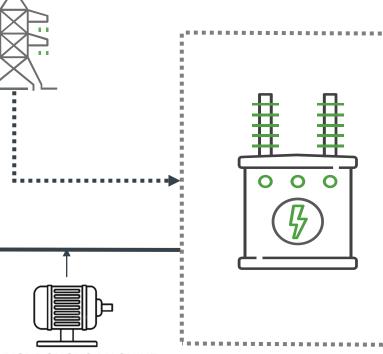
*Can be customized in 50kW increments

+Includes temporary fuel tanks

Proprietary and Confidential


SPACE FOR TEMPORARY SOLUTION COVELO SUBSTATION

11


ALTO 32 MW APPLICATION 2.65 MW BUILDING BLOCKS

SOLUTION	BLOOM ENERGY	DIESEL
KW/SF*	.37	.39
SF Required*	80,640	76,800
Sufficient Space at Sub-station	No	No
Community Friendly Generation	Yes	No
Permittable for permanent use	Yes	No
Island Duration Capability	Indefinitely	Unknown

*Adjusted for service access, clearance and all necessary equipment

Proprietary and Confidential

SYNCHRONOUS MACHINE GENERATING FAULT CURRENT UP TO 250% OF NAMEPLATE

Recommendation:

Permanently deploy as many MWs as possible at substation and deploy remainder strategically downstream to enable full capacity

SPACE CONSTRAINTS FOR A 30+ MW SOLUTION ALTO SUBSTATION

Bloomenergy[®]

ILLUSTRATIVE COST STRUCTURE COVELO SUBSTATION – TEMPORARY SOLUTION

Cost Structure: Monthly rental, 6 month minimum

Cost Estimate: \$250,000 - \$320,000*/month

- Nameplate capacity would be 3.25 MW to support 2.5 MW peak load
- Includes equipment, delivery, installation, comprehensive ongoing O&M and removal
- Pricing can be restructured as a fixed capacity charge with variable operational charges

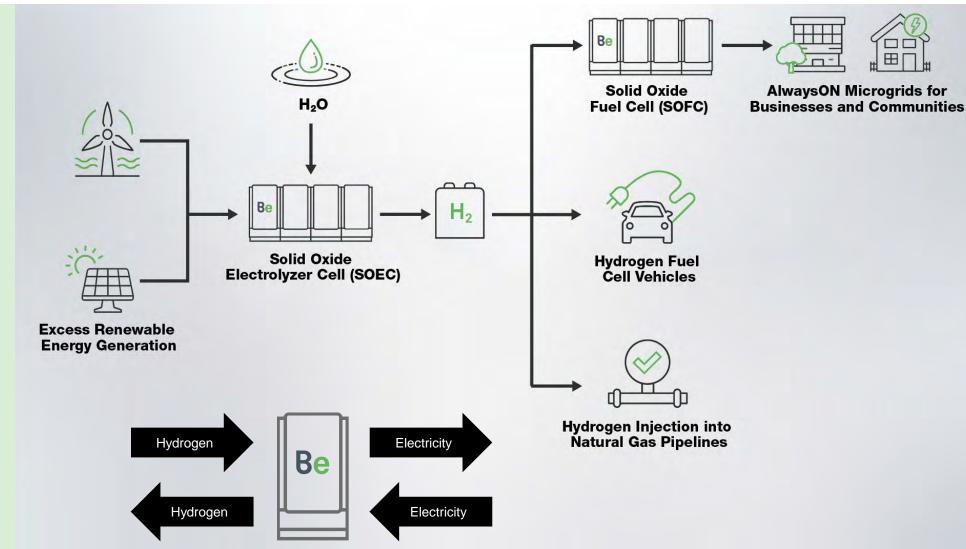
ILLUSTRATIVE COST STRUCTURE ALTO SUBSTATION – PERMANENT SOLUTION

Cost Structure: 30-Year PPA

Cost Estimate: 6.5 - 8.5 cents per kWh

- Includes equipment, delivery, installation, comprehensive ongoing O&M, and decommissioning
- Contracted tolling rate with 2% annual escalator
- 24x7 output

Fuel Costs: 2.2 – 2.5 cents per kWh


- Commodity cost for PG&E Gate location
- Delivery cost to vary based on utility's strategy for distribution

RENEWABLE FUEL READY

Bloomenergy°

Bloom Energy Servers are capable of running on hydrogen blended with natural gas today and 100% pure hydrogen in the near future

Green hydrogen can be generated using otherwise curtailed renewables

Bloomenergy