Resiliency & Microgrids Working Group Microgrid Integration and Interconnection

Resiliency and Microgrids Team, Energy Division Novemeber18, 2021

California Public Utilities Commission

WebEx and Call-In Information

Join by Computer:

https://cpuc.webex.com/cpuc/onstage/g.php?MTID=e4972611b4ee872b3a240eb4222523d4f Event Password: RMWG (case sensitive) Meeting Number: 2495 245 9276

Join by Phone:

• Please register using WebEx link to view phone number. (Staff recommends using your computer's audio if possible.)

Notes:

- Today's presentations are available in the meeting invite (follow link above) and will be available shortly after the meeting on https://www.cpuc.ca.gov/resiliencyandmicrogrids.
- The presentations will be recorded. The question and answer segments will not be recorded. There will not be meeting minutes.

WebEx Logistics

- All attendees are muted on entry by default.
- Questions can be asked verbally during Q&A segments using the "raise hand" function.
 - The host will unmute you during Q&A portions [and you will have a maximum of 2 minutes to ask your question].
 - Please lower your hand after you've asked your question by clicking on the "raise hand" again.
 - If you have another question, please "re-raise your hand" by clicking on the "raise hand" button twice.
- Questions can also be written in the Q&A box and will be answered verbally during Q&A segments.

WebEx Tip

1. Click here to access the attendee list to raise and lower your hand.

2. Raise your hand by clicking the hand icon.

3. Lower it by clicking again.

Access your

settings here

meeting audio

L' Snare

Unmute

WebEx Event Materials

Preliminary Resiliency & Microgrids Working Group Schedule

Month	Resiliency and Microgrids Working Group Topics			
February				
March	Standby Charges	Multi-Property		
April		Microgrid Tariff		
May				
June			Value of Posilioney	
July			value of Resiliency	
August				
September				Microgrid
October				Interconnection
November	Customer-Eacing			
December	Microgrid Tariff Revisit			
January				
February				

Interconnection: Working group participants will discuss interconnection and related issues as they specifically relate to microgrids. Topics will include interconnection requirements for grid-connected mode microgrid operations, controls, communications, and islanded mode microgrid operations where interconnection requirements are not applicable.

Agenda

I. Introduction (CPUC Staff)

2:00p – 2:10p

• WebEx logistics, agenda review

II. Schweitzer Engineering Laboratories – Controls and Protection 2:10p – 3:55p

- (Scott Manson)
- Presentation
- Q&A
- IIII. Closing Remarks, Adjourn (CPUC Staff)

3:55p – 4:00p

• Provide information on the next meeting

Today's Speaker

Scott Manson received his M.S.E.E. from the University of Wisconsin–Madison and his B.S.E.E. from Washington State University. Scott is the engineering services technology director at Schweitzer Engineering Laboratories (SEL), Inc. Scott is a registered professional engineer in six states and holds 20 patents. Scott can be reached at <u>scott_manson@selinc.com</u>.

Schweitzer Engineering Laboratories (SEL) specializes in digital products and systems that protect, control, and automate power systems. <u>https://selinc.com</u>.

Microgrid Challenges and Solutions

Scott Manson, ES Technology Director

© 2021 SEL

Making Electric Power <u>Safer</u>, More Reliable, and More Economical

<u>Safer means Protecting Humans, the Environment,</u> and Assets with SEL Protective Relays

SEL Relays Are North America's favorite Microgrid Controllers

- Multifunction protection
- Metering
- Programmable logic controller
- Sequential Events Recorder (SER)
- Oscillography recorder
- Human-machine interface

SEL POWERMAX® is a **FULLY INTEGRATED** solution including relays, controllers, communication, Cybersecurity, and remote monitoring

SEL POWERMAX Development Timeline

2002	2008	2014	2018	2019
POWERMAX	POWERMAX	POWERMAX	POWERMAX	POWERMAX
Industrial	Utility	Commercial	Mobile	Garrison

Relay-Based POWERMAX Solutions Scale to Any Size Power System

STRATEGY

Example: SEL Relay Controlling a TESLA Powerpack

The bad news: Inverter Based Resources have created new protection & control challenges

- Human preference
- DQ transformations
- PLL
- Human error
- DER faster than protection
- Sensitivity to load composition changes
- Disparate standards
- Excessive complexity
- Inconsistent fault currents

Problem: Inverter produce Unusual Harmonics Solution: Use SEL Relays + Synchrowave Event Software to decode the noise

Problem: Integration is hard Solution: Use SEL relays to Simplify Integration

- Identical interface for all inverters and gensets
- Simplifying user's experience
- Advanced controls and visualization
- Superior protection and diagnostics
- Ensures interoperability between DER
- Plug and play communication
- Incremental procurement and commissioning

Problem: Integration is Expensive Solution: Use POWERMAX Plug and Play Communications

Problem: Legacy Load Balancing Algorithms are Difficult to configure and Tune Solution: SEL POWERMAX Advanced Control Algorithms Ensure Universal DER Interoperability

⁶ Problem: Is your microgrid working right? Solution: Use Synchrowave Operations Historian as your daily dashboard

Problem: IBR create unusual currents Solution – Use SEL relays with advanced signal processing

Problem: Inverters produce much less fault current than generators Solution: Use advanced **SEL** relay protection algorithms which can detect an inverter overload

Problem: Inverter fault currents are restricted by health of inverter and battery Solution: Use SEL Axion to Manage Batteries and **Adapt Protection in SEL** Relay

Problem: Variable fault currents require adapting downstream protective relays Solution: Communicate between SEL relays with frequency shifting

Problem: IBR are faster than Protection!

Solution: Use SEL relays to control inverters...at the RIGHT speed

Туре	Time (seconds)
Governor	~1.000
AVR	~0.100
Load-shedding protection	~0.016
Distance protection	~0.006
Traveling-wave protection	~0.001
Inverters	It depends

SEL Relays provide Seamless Islanding after a Utility fault

SEL Relays provide Seamless Islanding after a Utility fault

SEL Relays provide Seamless Reconnection after the Utility recovers

Problem: IBR controls are non deterministic Solution: Use SEL Relays as controllers

SEL Relay control

IBR erratic control

Orange Cursor Time 10/02/20 02:10:34.695 PM

۰.	Phasor	Calcu	lations
----	--------	-------	---------

Name	Mag	Ang
IAX_A.Phasor	109.165	113,
IBX_A.Phasor	102.162	-10.5
ICX_A.Phasor	116.08	-119
VAX_V.Phasor	120.208	118.)
	IAX_A.Phasor IBX_A.Phasor ICX_A.Phasor VAX_V.Phasor	IAX_A.Phasor 109.165 IBX_A.Phasor 102.162 ICX_A.Phasor 116.08 VAX_V.Phasor 120.208

Problem: Inverters commonly require custom tuning Solution: Use SEL Relays as High Fidelity Data Recorders

EL POWERMAX Microgrid Solution Plays Big On Campus Montclair State University, New Jersey, U.S.A.

30

SEL POWERMAX System Prevents Blackouts Across Entire Country

The Republic of Georgia

AUDIN STATE AN ANTE

and protected by SEL POWERINAX

4 Megawatt battery controlled and protected by SEL POWERMAX

Presidio, Texas, U.S.A.

SEL POWERMAX prevents Blackout at the Worlds most Valuable Oil Field

Shaybah, Saudi Arabia

SEL POWERMAX Brings Reliable Power to MIT Boston Campus

SEL POWERMAX Outperforms Competitors in a Microgrid Shootout

ENERGY

NATIONAL RENEWABLE ENERGY LABORATORY

Colorado, U.S.A.

Sign up for a free SEL POWERMAX and Relay Controls Demonstration selmicrogriddemo@selinc.com

Connect with us info@selinc.com f f in YouTube

Q&A and Discussion

Closing and Upcoming Meetings

Upcoming Meetings

- Thursday, December 9, 2021 (2 pm 4 pm) (tentative)
 - Selective De-energization Within a Microgrid Island
 - Additional Participant Presentations on Interconnection Concerns
- Thursday, January 6, 2022 (2 pm 4 pm) (tentative)
 - DC Metering Standard (brief re-visit)
 - Recap of Interconnection Sessions and Recommendations

California Public Utilities Commission

Patrick.Saxton@cpuc.ca.gov https://www.cpuc.ca.gov/resiliencyandmicrogrids/